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Abstract 
Demand response (DR) is an emerging research field and an effective tool that 

improves grid reliability and prevents the price of electricity from rising, especially in 
deregulated markets. This paper introduces the definition of DR and Automated Demand 
Response (Auto-DR). It describes the Auto-DR technology utilized at a commercial 
building in the summer of 2006 and the methodologies to evaluate associated demand 
savings. On the basis of field tests in a large office building, Auto-DR is proven to be a 
reliable and credible resource that ensures a stable and economical operation of the power 
grid. 
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Introduction  
As an essential of modern life, electricity is different from other commodities. It 

cannot be stored economically, and the supply of and demand for electricity must be 
balanced in real time. Mismatches in supply and demand can threaten grid integrity 
within seconds. Also, grid conditions can change significantly from day-to-day or hour-
to-hour. Demand levels also can change quite rapidly and unexpectedly. Increasing grid 
capacity to maintain reserve margins sufficient for demand is possible but is not a good 
solution because the electric system is highly capital-intensive, and both generation and 
transmission system investments have long lead times.  

 
Whereas the cost of electric power varies on a short time scale, customers generally 

face retail electricity rates that are fixed for months or years at a time, representing the 
average costs of electricity production (including transmission and distribution). This 
disconnect between costs of short-term marginal electricity production and the fixed 
retail rates paid by consumers leads to an inefficient use of resources. By contrast, 
Demand Response (DR) generally induces demand shedding, shifting or limiting during 
times when the electric grid is near its capacity, or when electric wholesale prices are 
high [1]. Under conditions of tight electricity supply, DR can significantly reduce peak 
price and, in general, electricity price volatility [2], as shown in Fig. 1. By improving 



electric grid reliability, managing electricity costs, and optimizing electric power 
resources, DR has been capturing worldwide interest in recent years. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Source: U.S. Department of Energy) 
Fig. 1  Impact of Demand Response on Electricity Supply Cost 

 
In general, DR may be defined as short-term changes in electric usage by end-use 

customers from their normal consumption patterns in response to changes in the price of 
electricity over time, or to incentive payments designed to induce lower electricity use at 
times when either of high wholesale market price or system reliability is jeopardized [3]. 
DR can be classified into two categories [2]: price-based DR and reliability-based DR. 
Price-based DR refers to customer reduction in demand when they receive signals 
indicating increased prices, in exchange for discounted retail rates during non-DR periods. 
Reliability-based DR refers to customer payments or preferential prices for non-DR 
periods derived from reduced electricity usage during periods of system need or stress.  
 

Critical Peak Pricing (CPP) program is a price-based tariff. CPP provides for 
incentive-based lower energy rates on non-CPP event days in exchange for higher rates 
on up to 12 CPP event days during the summer months (from May 1 to October 31). The 
associated tariffs may vary for different utilities. An example of the CPP tariff structure 
for Pacific Gas & Electricity (PG&E) is illustrated in Fig. 2, which represents the 
electricity charge for usage rising by three times the customer’s summer part-peak energy 
rate relative to the otherwise-applicable rate during the Moderate-Price period, and by 
five times the summer peak energy rate under otherwise-applicable rate during the high-
price period. 

  
A key requirement for DR is the availability of interval meters. In order to encourage 

the participation of DR programs, PG&E currently provides free interval meters to 
consumers over 200 kW if they choose to participate in a DR program. The meter records 
15-minute load data and provides daily transmission of measurements over a 
communication network to a central collection point. Lack of metering infrastructure may 
limit participation in a DR program, but equally constraining may be the lack of 
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knowledge about how to develop and implement DR control strategies [4].  Manually 
managing and participating in DR programs can also be labor intensive. Automated 
Demand Response (Auto-DR) does not involve human intervention, but is initiated at a 
home, building, or facility through receipt of an external communications signal to 
execute pre-programmed demand response strategies. Auto-DR ensures a completely 
hands-off approach through automation of the entire process. When demand reduction is 
not desirable at a particular site, the Auto-DR system provides participants the choice to 
override DR events.  
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Fig. 2  Example of CPP Tariff Structure for PG&E 

   

Automated Communication System 
The Auto-DR system uses an XML-based Web Service Oriented Architecture (SOA) 

for platform-independent, interoperable systems. Auto-DR consists of two major 
elements formalized by the draft Open Auto-DR Communication Standards [5].  First, a 
Demand Response Automation Server (DRAS) provides signals that notify electricity 
customers of DR events.  Second, a DRAS client is at the customer’s site to listen and 
provide automation signals to existing pre-programmed controls.  There are two types of 
DRAS clients:  
1. A Client and Logic with Integrated Relay (CLIR) or a simple client for legacy control 

systems.  
2. A Web Services software or smart client for sophisticated control systems. 

As shown in Fig. 3, the steps involved in the Open Auto-DR process during a DR 
event are:  
1. The Utility or ISO defined DR event and price/mode signals are sent to the DRAS.  
2. DR event and price services are published on a DRAS. 
3. DRAS Clients (CLIR or Web Service) request event data from the DRAS every 

minute.   



4. Customized pre-programmed DR strategies determine action based on event 
price/mode. 

5. Facility Energy Management Control System (EMCS) carries out load reduction 
based on DR event signals and strategies. 

 
 

 
Fig. 3 Generic Automated DR Open-interface Standard Architecture 

 

Field Test  

Background 
The Demand Response Research Center (DRRC), launched by the California Energy 

Commission's Public Interest Energy Research (PIER) program, has conducted DR 
research since 2003. A series of Auto-DR field tests have been carried out since then. 
Three-hour tests were conducted at five sites in 2003 and at eighteen sites in 2004, 
whereas six-hour tests on a pilot DR program were carried out at twelve sites in 2005. 
The average demand savings were 8%, 7% and 9%, respectively [6, 7, 8].  

 
In 2006, a new secure, pre-configuring Client and Logic with Integrated Relay (CLIR) 

was developed. The CLIR enables the Energy Management Control Systems (EMCS) of 
the facility to receive Auto-DR signals over the Internet to trigger pre-programmed DR 
strategies and to reduce peak electric loads.  Here, we present results of field tests for a 



building (in Martinez, CA) that participated in the Auto-DR pilot DR program in 2006 
[9].   

 

Field test object 
Building Martinez (referred to below as Martinez) is a county government office 

building. It is a four-floor, 131,000 ft2 building located in Contra Costa County, 
California. The building has five 60-ton rooftop package units. The ventilation system is 
single duct variable air volume (VAV) with a perimeter reheat air handler system 
delivering conditioned air to the whole building in the summer. The cooling set point 
during normal operation is 76°F. Separate direct fired natural gas rooftop packages 
provide heating in winter. The building has a digital direct control (DDC) system. The 
peak load of the whole building in the previous year (2005) was 528 kW. 

 
Martinez participates in PG&E’s CPP program. A total of eleven CPP events were 

called based on the weather forecast in Northern California in 2006. Event days and the 
maximum outside air temperature (OAT), as well as the average maximum OAT on three 
CPP baseline days, are shown in Table 1. Field tests at Martinez were carried out on all 
of these event days.  
 
Table 1 Peak OAT on DR Event Day and Average maximum OAT on CPP 
baseline days 
DR event day 6/21 6/22 6/23 6/26 7/17 7/18 7/20 7/21 7/24 7/25 7/26
Max. OAT on DR day (°F) 100 103 96 97 105 98 100 106 108 107 96
Average max. OAT on CPP baseline days (°F) 92 92 92 92 91 91 91 91 91 91 91  
 

DR strategies 
Martinez executed a global temperature adjustment (GTA) strategy [10] to reduce 

demand in response to the rising price signals during the CPP events.  GTA increases the 
HVAC zone temperature set points for an entire facility. Martinez increased the zone 
temperature set point from 76 °F to 78 °F during the moderate-price period, and by an 
additional 2 °F during the high-price period.  At an event’s finish, the system needs to 
return to normal operation. To avoid rebound which is the load spikes up right after 
resetting back the operation, Martinez released the VAV boxes one-by-one over a short 
time interval. These strategies were pre-programmed and dispatched to the building 
EMCS.  

 

Field Test Results 

Evaluation Methodology 
To determine demand reduction, a baseline is needed to estimate what the load would 

have been on the DR event day in the absence of DR strategies. Three baseline models 
[11] were used to evaluate demand reduction during event hours. The 3/10 baseline is the 
15-minute-average based on the three days with the highest total kilowatt-hour usage 



during the program hours of the immediate past ten days (excluding weekends, holidays 
and other DR days). The 3/10 baseline is used by utilities in California to calculate 
demand reduction. A 3/10 baseline with morning adjustment (3/10_MA) model adjusts 
the 3/10 baseline by a morning adjustment multiplier (ra) for each hour. The factor ra is 
defined as the ratio of the actual to the predicted load in the three hours prior to the event 
period, as shown in Equation 1. The Outdoor Air Temperature regression with morning 
adjustment (OAT_MA) baseline model uses a weather regression model with morning 
adjustment. The weather regression model estimates load by the OAT linear regression 
based on the past twenty uncurtailed business days. In the OAT regression model, 
predicted load Lp,h can be calculated by equation 2. Therefore, the OAT_MA can be 
calculated from Lp,h by multiplying by the morning adjustment factor ra.   
 

ra =( La,9+La,10+La,11)/( Lp,9+Lp,10+Lp,11)........................................................................................................ 1 

Where, ra is the morning adjustment factor, 
La,9 , La,10 , La,11 are the actual hourly average loads on DR day at the hour’s start at 
9:00am, 10:00am, and 11:00am, respectively; and 
Lp,9 , Lp,10 , Lp,11 are the predicted load by CPP baseline at the hour’s start at 9:00am, 
10:00am, and 11:00am, respectively. 
 
Lp,h =ah+bh*Th …………………………………………………………………………………………….... 2 

Where, Lp,h  is the predicted load at the time h, 
ah , bh  are the linear constants at time h which can be calculated by the twenty pairs of 
past actual load/OAT data, and Th is the OAT at time h. 

 

Demand reduction  
As an illustration of how DR strategies affect actual load profile in Martinez, Fig. 4 

shows the time series whole building power (WBP) and baselines of the first test on June 
21, 2006. The zone temperature of a 2 °F increase at 12:00pm caused demand to drop 
from 432 kW to 350 kW in 30 minutes before the load slowly recovered over time. At 
15:00, an additional 2 °F increase caused almost 100 kW demand drop in about 15 
minutes. The rebound strategy successfully prevented load from spiking at the end of the 
event. 

 
Table 2 shows results for average demand reduction using three different baselines. 

Based on OAT_MA, six-hour-average demand reductions range from 14% to 29% of 
WBP. The average demand savings for OAT_MA of the eleven DR events was 96 kW, 
accounting for 19% of total demand. The maximum three-hour-average demand 
reductions during the moderate-price and high-price period were 132 kW and 178 kW, 
accounting for 25% and 34% of WBP, respectively. Based on 3/10_MA, the six-hour-
average demand reductions ranged from 7% to 21% of WBP, and averaged 14% of WBP. 
However, based on the 3/10 baseline, the six-hour-average demand reductions were in the 
range of -11% to 13% of WBP, with an average of 3%. Negative sheds were shown on 



several DR days characterized by maximum OAT of over 100°F.  The 3/10 baseline 
tends to under-estimate shedding on high OAT days preceded by relatively cooler days. 
In Fig. 4, the maximum OAT on June 21 is 100°F whereas on three baseline days, the 
highest temperatures were 93°F, 85°F, and 98°F, with an average of 92°F.    
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Fig. 4 Whole Building Power and Baselines on DR Event Day of June 21, 2006 

 
 
 
Table 2 Demand Reduction Evaluation by Three Baseline Models 

Baseline 6/21 6/22 6/23 6/26 7/17 7/18 7/20 7/21 7/24 7/25 7/26 Average
12:00-6:00 kW 28 -4 54 32 -41 17 47 19 -46 -19 48 12
Average % 7% -1% 13% 8% -10% 4% 11% 4% -11% -4% 11% 3%

12:00-3:00 kW 20 1 39 11 -65 -5 34 11 -60 -35 35 -1
Average % 5% 0% 9% 3% -16% -1% 8% 3% -14% -8% 8% 0%
3:00-6:00 kW 37 -9 70 52 -16 39 59 27 -32 -3 61 26
Average % 9% -2% 18% 13% -4% 10% 14% 7% -8% -1% 15% 6%

12:00-6:00 kW 71 66 72 102 86 94 67 34 38 37 72 67
Average % 16% 14% 17% 21% 16% 19% 15% 8% 7% 8% 16% 14%

12:00-3:00 kW 64 72 57 83 64 74 56 26 26 23 59 55
Average % 14% 15% 13% 17% 12% 15% 12% 6% 5% 5% 13% 11%
3:00-6:00 kW 79 59 88 121 108 115 79 42 49 52 85 80
Average % 18% 13% 21% 26% 21% 24% 18% 10% 10% 11% 19% 17%

12:00-6:00 kW 93 78 91 155 101 101 89 67 89 89 97 96
Average % 20% 16% 21% 29% 18% 21% 19% 14% 16% 17% 20% 19%

12:00-3:00 kW 79 84 77 132 82 81 78 56 67 65 78 80
Average % 17% 17% 17% 25% 14% 16% 16% 12% 12% 12% 16% 16%
3:00-6:00 kW 106 73 106 178 120 122 101 78 111 113 115 111
Average % 23% 15% 24% 34% 22% 25% 22% 17% 20% 21% 25% 23%

3/10 
baseline

3/10_MA

OAT_MA

dateTime

 
 

Discussions 
Many baseline methods can be used to evaluate and measure demand reduction. In 

this work, three baselines were used for evaluation.  The 3/10 baseline is the simplest and 
easiest to calculate. It is reliable when applied to non-weather-sensitive buildings. 
However, it tends to underestimate actual demand reduction for weather-sensitive 



buildings because DR events are more likely to be called on the hottest days. Since DR 
program administrators have a strong preference for simpler calculation methods with 
limited data requirements, the 3/10 baseline was chosen by PG&E for demand reduction 
evaluation. Here, the highest OAT on event days were in the range of 96°F to 108°F, 
whereas the average of the highest OAT on three baseline days for each event were either 
91°F or 92°F, as shown in Table 1. Because Martinez is a large office and a weather-
sensitive building, the 3/10 baseline generally underestimates actual demand reduction. 
Existing research [12] indicates that application of a morning adjustment factor 
significantly reduces bias and improves the accuracy of baseline models. Compared to 
the 3/10 baseline, accuracy of 3/10_MA baseline is improved in most cases. However, 
3/10_MA is not applicable for sites at which pre-cooling strategy is used. The OAT_MA 
baseline is accurate but complicated. It requires not only the interval load data, but also 
local hourly OAT data which can be obtained from a nearby weather station that is 
currently active and maintained by either a state or a federal agency. In this research, the 
weather data at a local airport, one mile away from the building, was used.  Variation in 
climate between weather station and site may also influence the nature of building 
response. 

 
It is important to choose an appropriate baseline to calculate DR reduction.  An 

accurate baseline can evaluate the actual demand reduction fairly whereas a biased 
baseline could either under- or overestimate the actual demand reduction. Here, the 3/10 
baseline clearly under-estimates the demand reductions during the event hours. 

 

Conclusions 
The primary goal of this research was to examine the use of an automated 

communication system for DR and to evaluate the savings potential in actual CPP events 
at a large office building. Auto-DR field tests demonstrate the reliability of the 
communication system. Demand savings were significant and reliable through the 
automated system even during a heat wave. Baseline selection was proven to be 
important to measure the demand reduction. In this study, because the object is a high 
weather-sensitivity building, OAT_MA is the best baseline.An average 19% of demand 
savings during six event hours on eleven CPP event days was delivered through 
automation. Through field tests, Auto-DR was proven to be a reliable and credible 
resource that reduces peak demand and ensures stability of the power grid. Auto-DR 
implementations can cut back the high costs of peak demand, lower the average 
wholesale power price, and eventually deliver benefits to all of electric customers.  
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